Linear Microsystems in Healthcare: Ultrasound Machines and ASIC

Ultrasound machines play a major role in healthcare in a variety of ways. Traditionally, ultrasounds are display images for prenatal applications and internal medicine. The use of microsystems and application-specific integrated circuit (ASIC) technology in the development of innovative medical and healthcare solutions, like ultrasound technology, helps make this possible.

Importance of Ultrasound Technology in Healthcare

Ultrasound waveforms transmit and focus along a vector or beam. The ultrasonic energy reflects from the patient and focuses to form a picture of an object from the signal received.

The moment the beam is collected, the operation will be repeated by the ultrasound imager. Thus, collecting a series of beams that reconstruct into a two-dimensional image.

Aside from prenatal applications and internal medicine, there are newer applications for ultrasound technology which including the following:

Dental Descaling

  • The use of ultrasound technology in dental medicine is for periodontal therapy. This is in the form of ultrasound debridement. This application is more effective and efficient than manual debridement.

Shockwave Lithotripsy

  • As the name suggests, this process breaks up kidney stones and other calcium-based growths inside the body with the use of ultrasonic waves. This is quite useful to break up the stones that will not pass naturally. In fact, it is an excellent alternative to surgery.

Research also shows that high-resolution focused beams of ultrasonic energy have been used for imaging purposes in non-destructive testing and by the medical profession. This is achievable by pulsing the elements of the ultrasonic array transducer in a predetermined manner.

Role of ASIC technology in the healthcare process

ASIC technology also plays a great role in the healthcare process with implantable medical devices providing therapy for several conditions. Medically integrated circuits are in devices that are programmable to administer drugs on a more effective schedule. This will help in providing effective treatment and relief of patient’s conditions with lesser side effects.

Medical ASIC does several supporting functions for implanted medical devices, which include the following:

  • Communications
  • Sensing
  • Stimulation
  • Therapy delivery
  • Memory storage
  • Microprocessor
  • Power management

Microsystems in healthcare help meet the requirements for medical device integration since implantable devices are lightweight, small, and power-efficient.

Thus, all the functionalities are deliverable in a small medical ASIC with a smaller footprint than other solutions. In comparison to ASIC for commercial use, applications for medical devices already have a process maturity less likely to require revisions, offer a robust solution, and provides more quality.

The use of ASICs in healthcare also plays a vital role by combining several functions into one chip. This technology will not be possible because the number of chips required to drive the machinery will be too cumbersome.

Overall, Linear MicroSystems can provide a solution that will further benefit the healthcare industry with the application of modern ASICs and ultrasonic technology. Click here to get in contact with our engineers today.

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.


How SOC is Used in Glucose Monitoring Devices

When thinking of a medical device such as a continuous glucose monitor, you might not consider the technological advancements behind them. Technology like system on a chip, or SOC, is helping make massive improvements in the world of glucose monitoring.

Monitoring blood sugar levels in patients with diabetes is vital. Unmonitored and uncontrolled conditions can lead to complications, such as the following diseases:

  • Heart disease
  • Stroke
  • Glaucoma
  • Kidney damage
  • Nerve damage

Therefore, several different ways are available to properly  monitor blood sugar, including:

  • Blood glucose meter
  • Continuous glucose monitor
  • Freestyle libre
  • Urine test

Among several effective methods, the glucose monitoring device is gaining popularity for providing real-time glucose or blood sugar readings.

However, some patients find the conventional methods quite bothersome. Thus, advances in blood sugar monitoring technology can be a game-changer.

One of them is the glucose monitoring device to monitor the blood sugar levels by measuring the interstitial glucose level. A signal travels to a monitor or a mobile app where an alert sounds if the levels become too high or too low.

How glucose monitoring devices work

Glucose monitoring devices work with the application of sensors to check how fast and in which direction the glucose levels are trending. Moreover, it can let you check your sugar levels overnight. The values of the glucose readings appear after data is transmitted to a monitor or insulin pump.

The sensor inserts into the subcutaneous tissue or just under the skin. This is quite similar to the insertion of the insulin pump catheter in the upper buttock or abdominal area.

The glucose levels in the fluid surrounding the cell are measured every ten seconds and converted into an electrical signal. These signals will represent the amount of sugar in the blood.

This device uses a transmitter that attaches to the sensor and sends a signal to a pager-sized device at a person’s belt or waistline. The system will record an average glucose value automatically every 5 minutes for up to 72 hours.

It requires 3 days before the sensor will be removed and the information will be downloaded to a computer. This will then be used to collect data and make necessary adjustments if needed.

This is quite useful to identify the fluctuations and trends that might go unnoticed with standard tests as well as fingerstick measurements. As a result, it will enable you to take action to avoid severe high or low levels before it is too late.

Technological advancements using SOC

Applications without SOC, advancements in monitoring blood sugar levels would be slower to come about. In fact, conventional glucose monitoring methods around the world are costly, invasive, painful, and time-consuming.

The research helps determine the effectiveness of using continuous non-invasive glucose monitoring. SOC technology has been useful for introducing a wearable system for monitoring glucose levels based on a single wavelength photoplethysmography. The overall system uses a 180 nm CMOS process with a chip size of 4 square mm and consumes about 1.62 mW.

Furthermore, developers are working on an ASIC chip to provide a controlled blood glucose monitor as an implantable device. This ASIC-controlled blood sugar monitor using SOC is implantable in the upper arm or wrist area of the patient.

Interested in working with Linear MicroSystem engineers on your next project? Click here to view markets we currently work with!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.

mixed-signal asic

What Are Mixed-Signal ASIC Product and Test Engineers?

The job of a mixed-signal ASIC product and test engineer can be so rewarding. But it requires certain skills and working knowledge in testing high-speed digital and high-performance analog circuits.


What is mixed-signal ASIC?


Mixed-signal ASIC design is the combination of both analog and digital circuits placed on the same chip. So, this gives engineers the potential to reduce complex, multiple-integrated circuit designs into only a single integrated circuit.


The availability and commercial viability of mixed-signal ASIC makes it possible to gain certain benefits, such as the following.


  • Reduction in cost
  • Protection of intellectual property
  • Improved reliability
  • Low power consumption
  • Miniaturization
  • Improvement in performance


Analog and mixed-signal ASIC designs are both found in products in various segments of the market, from healthcare to cosmetics, industrial sensors to flight control, mobile devices to credit card scanners, as well as instrumentation.


A mixed-signal ASIC combines the competencies of analog and digital circuit design. Building such technology will require the following aspects.


  • Analog-to-digital conversion using all methods in sigma-delta modulation
  • Circuit design with linear circuits and techniques in switched-capacitor circuits
  • Development of tests patterns, test procedures, and test structures for ASICs
  • Low-power circuit design
  • Mixed-signal ASIC design and modeling


What do product and test engineers do?


The responsibilities of a product and test engineer involve designing and implementing test solutions for analog and mixed-signal integrated circuits.


It is also their job to perform yield analysis, interface with design engineering and customers particularly on the use, testing, and problems in production.


The product test engineer also has duties and responsibilities which include the following.


  1. Development of test programs and write test plans for the validation of product performance
  2. Do product testing and log test results
  3. Analyze and track defects found after product testing
  4. Work with product teams for the development of test plans for new products
  5. Assist in the development of test protocols in anticipation of product performance
  6. Monitor and track status of test defects
  7. Determine the timing and cost needed to perform test programs
  8. Preparation of failure analysis report and implement corrective actions
  9. Recommendation of product design revisions on the basis of test data to achieve expected performance
  10. Determine the needs to conduct testing in terms of resources and equipment
  11. Development of manual and automated tools in order to increase the effectiveness of tests
  12. Development of best practices for the improvement of test quality
  13. Review of the technical architecture documents, design documents, and functional requirements to know any potential defects.
  14. Maintain accuracy of documents for executed test programs
  15. Investigation of test problems and implementation of solutions


Why is a mixed-signal ASIC engineer a good position?


Your job as a mixed-signal ASIC engineer is without a doubt quite rewarding. Aside from the good compensation, the mixed-signal ASIC engineer plays a major role in the lifecycle of a mixed-signal integrated circuit.


In the absence of mixed-signal ASIC technology, there will be the non-existence of portable electronic devices that you can use on a daily basis. After all, can you imagine a world without mobile phones, navigation systems, or MP3 players.


Overall, a mixed-signal ASIC engineer is a key contributor in the development of next-generation instruments with the purpose of cost reduction, efficiency, and low power consumption.

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.

mixed-signal soc

Why Transparency is Important with Outsource Engineering Companies Working with Mixed-Signal SOC?

Outsource engineers play an important role in the development of technology using mixed-signal SoC. Basically, it is a lot cheaper, and you will get more specialized talents in a variety of ways, and it is easy.


What is transparency?


Transparency in the workplace can breed long-term success. So, with proper implementation, it can lead to the following benefits.


  • Creates trust between the employees and the employer
  • Helps improve their morale
  • Lowers job-related stress
  • Increasing employee happiness
  • Boosting performance


The practice of transparency in an organization can benefit both employers and employees. That is because they tend to become more successful in different areas such as the following.


  • Increased employee engagement
  • Stronger company culture
  • Fosters a type of comfort allowing employees to communicate freely


Most of all, when a work environment is transparent, it helps employees to feel valued and thus encourages creativity.


Why is transparency important in mixed-signal SoC projects?


The job involved in handling mixed-signal SoC projects requires transparency, such as those in the automotive industry. That is because the industry has been the main consumer of electronics technology since the 1960s.


Thus, the advancement of technology has caused an increase in demand for hybrid automobiles and electric vehicles.


Therefore, the automotive industry must work hand-in-hand with the electronics industry in order to address such demands. Since it is expected that automobiles will become more sophisticated in the years to come, each function of the car is going to be via sensor ASICs.


Outsource engineering companies working with mixed-signal SoC


Employing an outside entity to work for a business is outsourcing. This is important when a company is considering the reduction of costs, while others do it to outsource an extra set of skills such as engineers.


Thus, outsource engineering companies will be able to benefit from:


  • Increased technical support
  • Increased technical capabilities
  • Reduced operating cost
  • More focus on the core business drivers


However, aside from the reduction in cost, companies need to outsource engineering to access skills and expertise not available within them. But more importantly, it is essential to understand that engineering outsourcing will require the company to trust the team that they have picked.


That is because the expense of time and money that comes with big stake projects dealing with mixed-signal SoC is serious business. Thus, the best approach other than the engineering process is to get rid of the missing or wrong information and assumptions in the entire company.


Take note that full transparency creates a foundation of trust and understanding between engineers and clients. Open lines of communication between product management and engineering are vital to the success of your company.


This means that mistakes, hiccups, or roadblocks can be spotted early and avoided with good transparency tactics in projects. This can be done by giving more information than necessary.


Moreover, you can focus on being proactive, and sharing information freely, and receiving feedback.

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.


Beginners Guide to System-on-a-Chip

For a beginner in processing power and chips, particularly on the topics of PC and gaming consoles and the latest smartphones, it would require a basic understanding of what a system-on-a-chip is.


That is because further topics can involve jargon and abstract-sounding ideas that can be difficult to absorb, so even the most basic questions about SoC can be dense.


What is system-on-a-chip?


System-on-a-chip (SoC) is an integrated circuit (IC) that takes a single platform and integrates the whole electronic or computer system on it. Among the things that SoC looks to incorporate within itself are the central processing unit (CPU), internal memory, and input and output ports.


This can perform a range of functions depending on the type of system being reduced to the size of a chip. It can also perform other functions like signal processing, artificial intelligence, and wireless communication, among others.


SoC integrates all or most components of a computer or electronic system, such as a smartphone, which include the following.


  • The central processing unit or CPU is the brains of the SoC
  • Graphics processing unit or GPU handles graphics-related processes, including the visualization of the user interface of an app, as well as 2D/3D gaming
  • Image processing unit or ISP will convert data from the camera of the phone into video or image files
  • Digital signal processor or DSP handles functions that are more mathematically intensive than the CPU
  • Neural processing unit or NPU is used in high-end smartphones to enable the acceleration of machine learning tasks
  • Video encoder/decoder handles the conversion of video files and format in a power-efficient way
  • Modems will convert the wireless signals into data that the smartphone will understand. Such components are 4G, 5G, LTE, Bluetooth, and Wi-Fi modems


Different Uses of SOC


  • Automotive industry. Take note that a SoC is the single most powerful electrical component you can find in a car. Such new automotive SoCs use different specialized processing units on one chip to perform multiple tasks simultaneously.
  • Medical industry. SoC can gather data from an electrocardiogram and execute a heart rate extraction algorithm while only using 2.6uW of power.
  • Mobile phones, tablets, or AI. The SoC is the brain of the smartphone handling everything from the mobile operating system. The same goes for tablet mobile devices. This is also expected to enhance the semiconductor segment through AI chips that typically come in a form of a system-on-a-chip.


Educational requirements needed to work with System-on-a-chip


To work with SoC, it is vital to have a master’s degree in electrical engineering, mechanical engineering, or physics. That would take more than just five years overall.


However, some employers will accept candidates with only a bachelor’s degree with 3-5 years of work experience in microsystems engineering.




Learning the basics of system-on-a-chip is important if you are looking for a career path in microsystems engineering. Working with SoC requires not only basic knowledge but master’s degree courses in engineering or physics.


With more industries adopting system-on-a-chip, it can revolutionize the semiconductor segment one day, with artificial intelligence leading the way.

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.

Sensor ASIC

Mixed Signal SOC Explained

Most individuals may already be familiar with analog circuits and digital circuits. But there are some designs that integrate both analog and digital in real-life applications. In fact, the use of a mixed-signal System-on-a-Chip (SOC) with sensor ASIC is almost everywhere and present in daily living.

Today, mixed-signal devices are available in standard and customized designs for applications. However, the signal is more complex compared to analog-only or digital-only integrated circuits. The design and manufacturing are difficult with requirements entirely different from digital or analog circuits.

Mixed Signal SOC and Sensor ASIC

Firstly, mixed-signal SOCs are everywhere from smartphones, space electronics, electric vehicles, sensors, and more.

So, there are many common uses of mixed-signal SOC including Sensor ASIC.  The chip is customizable to meet specific requirements. Then, converts the analog input into 1 of 10 programmable ranges. Then, the results are displayed on a 10 segment bar.

Also, the use of mixed-signal ASICs and sensor ASICs are more prevalent in recent years. So, you can find sensors in offices, our homes, cars, and other establishments. Certainly, these sensors are made to make our lives comfortable and convenient.

From simply switching on/off lights, fire or smoke detection, the opening of the garage, and adjusting room temperature. All these are made possible because of sensors.

However, even before smart homes were in demand, sensors have been around and utilized in a wide range of applications from robotics, industry, electronics, and more.  Also, sensors are classified depending on the type of physical parameters they measure or the output signal.

Common Applications of Sensors:

  • Communications
  • Smartphones
  • Smartwatches
  • Satellites
  • Smart cars, autonomous cars
  • Smart homes
  • Computers
  • Remote Sensing
  • Robotics
  • Energy Plants
  • Lastly, Avionics

A sensor ASIC addresses the speed sensor to synchronize the speed of collective motors. Simultaneously, an ultrasonic sensor is for distance measurement.

Different types of sensor ASIC, their uses, and application

Speed Sensor

A speed sensor is customizable to detect the speed of an object like a vehicle. This is also available in different types: speedometer, picometer logs, wheel speed sensors, airspeed indicators, and more.

Temperature Sensor

Sensor ASIC in a temperature sensor controls the temperature of devices or equipment used in industrial applications.

PIR Sensor

Certainly, a PIR sensor or Passive Infrared sensor detects the motion of an object at 110-, 180-, and 360-degrees angles. This is type is particularly for automatic doors based on body movement nearby.

Other types of sensor ASIC:

  • Ultrasonic sensor
  • Light sensor
  • Color sensor
  • Pressure sensor
  • Touch sensor
  • Smoke sensor
  • Alcohol sensor
  • Rain and humidity sensor
  • Tilt sensor
  • Metal detector
  • Position sensor
  • GPS
  • Odometer sensor
  • Sound sensor
  • IR sensor
  • Fingerprint sensor
  • Pressure sensor
  • Bending sensor
  • Vibration sensor
  • Digital compass sensor
  • Half effect sensor
  • Heartbeat sensor
  • Water flow sensor
  • Flow and level sensor
  • Fog sensor
  • Lastly, Gas sensor

Certainly, check out the latest applications we are working on here at Linear MicroSystems by clicking here!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.


System-on-a-Chip(SOC) Technology and Its Common Uses

System-on-a-Chip(SOC) is popularly used across almost all industries. But despite its widespread use, many are still not familiar with the technology.

System-on-a-chip(SOC) is a single Integrated Chip with the components of a normal computer system like Central Processing Unit (CPU), Graphical Processing Unit (GPU), and Random Access Memory (RAM). SOC is a single, complete electronic medium that may comprise of digital, analog, radio or mixed-signal frequency.

Instead of assembling multiple chips and several components in one circuit board, system-on-a-chip(SOC) carries all this in one circuit. SOCs are small with impressive performance without using too much power.

Also, these chips made it possible for the creation of devices and applications that are useful in our day-to-day activities. SOCs are now an integral part of today’s modern times. So, SOCs are used in a variety of applications:

Mobile phones and Smartphones

The use of a single and tiny chip does not only make a mobile phone or smartphone receive and make calls/messages but can also perform multiple tasks effectively. From taking photos, playing games, access the Internet through mobile data and Wi-Fi, listening to audio files, and more, System-on-a-Chip (SOC) is responsible for all these.

SOC is the brain of the smartphone’s entire system. Imagine the number of things you can do on a gadget of size like the palm of your hand. All these tasks effectively function because of a SOC.

Products and Services With System-on-a-Chip(SOC)

Manufacturers have integrated the use of SOCs in automobiles, smartphones, medical equipment, computers, and more.

So, handheld medical devices are taking advantage of SOC, the power efficiency, size, design time, and reduced medical applications cost.

The automotive industry has also integrated SOCs in their automobiles for safety and navigation like operational efficiency, detect automotive attacks and technological issues such as connectivity and geolocation.

Data Centers and System-on-a-Chip(SOC)

SOCs are also deployed in data centers to provide solutions to big facilities and corporate computers. With the use of hundreds or more core chips to store, process, and manage information, data centers can save on power consumption while saving space.


Also, system-on-a-Chip (SOC) is useful in sensors for a multitude of electronics, devices, equipment, security devices, transportation, and more.

Some examples of these sensors are speed sensors for vehicle speedometers, radar guns, accelerometers, GPS to track location using a satellite system, camera to capture still photos and record videos, thermometer to check temperature changes, fingerprint sensor, etc.

Other Uses of System-on-a-chip(SOC) in Different Industries

  • Virtual Machine
  • Data Processing
  • Computing
  • Machines and Infrastructure
  • Embedded system
  • Binary
  • Proximity awareness
  • Augmented Reality (AR)
  • Construction
  • Entertainment
  • Manufacturing
  • Music
  • Fashion
  • Software and Technology Industry
  • Travel Industry

With today’s System-on-a-Chip (SOC), businesses and infrastructures no longer worry about high power consumption, overheating, or the need to have bigger space to store their equipment or computer systems.

As technology progress, SOC designers and manufacturers are also taking steps to advance the technology further to improve products, services, and experience.

Check out some of our applications using SOC by clicking here!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.

analog design

The Three Qualities That Make Analog Design Still Alive

Despite the advancement of technology, analog design remains in demand despite the prevalence of digital technology. Today, the use of highly capable computers, machines, and devices are common. While advancements have been present to try and kick analog to the curb, it perseveres. But what aspects of analog design make it great?

1.   Analog Process and Products are Indispensable

First, despite the popularity of digital designs, there are some things that modern technology cannot do for now. One example is the simple task of cursive typography which looks unnatural when done on a computer. Not to mention that manual typography has its natural flowing feel for added personality. Designs made from computers differ a lot compared to the analog process.

The majority of us would always go for sleek and beautifully designed tablets, laptops, or mobile phones, but if these will be of no use when bogged down. A non-working laptop while working will turn you to using old-fashioned pen and paper to take down notes. Even Google designers take courses on how to sketch their designs and ideas on paper before doing their designs online.

Then, switch-mode power supplies still rely on analog design because these cannot be handled by digital electronics. The same goes with high-class amplifiers that convert the analog signal to digital and back again, still rely on analog transistors to amplify them.

2.   The World is Analog

Even with high technology and the availability of digital electronic devices, almost everything that surrounds us is analog. No matter how much progress and how digital can we get, the world still needs analog interference to translate signals to the digital world.

Digital information needs to be moved to analog format at the transmitter t drive the communication channel when transmitting information over long distances. The same happens at the receiver’s end, digital signals need to be processed back to analog format so they can be converted back into digital information.

As the technology evolves and the demand for digital electronics increases, the analog design will also expand, and those analog components are likely to remain important.

3.   Accurate Representation of the Physical World

Sounds are analog. The video we capture and still images are analog. Measuring our heartbeat requires processing analog information. All that we see and hear is analog. The world is analogous, so analog design and signals provide a more accurate characterization of temperature, sound, or light, making an analog design best suited for audio and video transmission.

Apart from these top 3 qualities why analog designs endure, below are their advantages:

  • analog signals are easier to process.
  • analog communication are less sensitive in terms of electrical tolerance
  • uses less bandwidth
  • analog signals have a higher density

There are many reasons why analog is still alive up to these days. Even with the advancements in digital designs, analog is here to stay: Analog signals, processes, and products. Check out ways we implement analog design here at Linear MicroSystems by clicking here!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.

asic card

ASIC Cards in Aerospace Engineering

Modern aerospace electronics face challenges in the environment and increased security and production handling requirements. Thus, they have to maintain stringent reliability specifications while conforming to effective business models. This is something that ASIC cards can help with.


The improved efficiency, performance, and safety of new commercial aircraft can be derived from the advanced capabilities of aerospace electronics made available today. Thanks to the complexity of electronic systems used to develop cutting-edge and increasingly autonomous systems.


Consequently, aerospace product designers must have access to advanced deep-submicron process technologies to meet the specifications of future products. Moreover, they need to have access to complex IP like microprocessors and DSP cores, high-performance memory, and serial interfaces.


Three options a systems designer can use to implement custom logic in an aerospace electronic application.


  • Field programmable gate array (FPGA)
  • Traditional cell-based application-specific integrated circuits (ASICs)
  • Structured ASICs


FPGA for aerospace applications


The use of FPGAs might have some advantages for logic solutions in aerospace applications. One example is the use of programmable devices, which provide impressive performance capabilities.


Advanced IP-like microprocessors and memory interfaces available in such devices can make them more attractive for avionics applications. However, the additional requirements for aerospace applications can pose a mismatch between FPGAs and aerospace systems.


Justification of cell-based ASICs


Given that cell-based ASICs can solve lots of issues in FPGAs, their design can be very low power with an enhancement for security. However, the tradeoff with these semi-custom devices is that they can be less cost-effective for low- to mid-volume aerospace applications that require technologies more advanced as compared to 130 nm.


The use of these specific ASICs with tech 130 nm or more can be a good fit. Nevertheless, for 90nm technologies and lower, only a few aerospace or military programs can justify the expense and lead time required for the development of cell-based ASICs for applications to run in production volumes on the order of 50 thousand units per year or lower.


Structured ASICs for special aerospace applications


Structured ASICs address traditional ASIC and FPGA shortcomings. Thus, they offer compelling advantages for system designers as opposed to cell-based ASICs and FPGAs.


Designers will be able to gain access to advanced technology nodes with structured ASIC platforms. These advanced technology nodes offer performance and IP portfolios required for sophisticated aerospace applications.


For applications requiring cryptography or other security issues, as well as becoming a possible target for tampering by the enemy, structure ASIC is an effective solution. Structured ASIC will not require a discreet device for providing a bitstream to program an FPGA device.


Note that a bitstream is a lot simpler to tamper with and decipher. With structured ASIC cards, an embedded battery-backed memory device can be added to a system with keys installed in secure on-chip memory.


As a result, security levels will increase and will make hostile tampering or reverse engineering a lot harder in a sensitive military or aerospace application.


ASIC cards serve as aviation or maritime security identification to confirm the bearer has already undergone a security check.


Interested in starting a new project with our experts here at Linear MicroSystems? Click here to be re-directed to our contact page!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.


ASIC Chip Design Flow

Engineers must mimic a tried-and-tested ASIC chip design flow to guarantee successful ASIC design. This should be derived from having a good understanding of ASIC specifications, low power design, and performance, requirements while focusing on achieving the goal of the right time to market.

So, what are we talking about?

  • Design specification
  • Architectural design
  • Behavioral and functional modeling
  • Logical implementation
  • Synthesis and testing
  • Place and route
  • Design layout


The ASIC chip design cycle


Certainly, fulfilling the demands of ASIC chip design is achievable by applying changes in design tools, methodologies, and hardware and software capabilities.

So, what do you need to know?

Chip specification

  • This is the time when the engineer will define features, functionalities, microarchitecture, and specifications with design guidelines of the ASIC chip. So, there are two teams involved, namely the design team and the verification team.


Design entry / functional verification

  • This confirms the functionality and logical behavior of the circuit by simulation on the design entry level. Then, the design and verification teams will come into play at this stage to generate RTL code with the use of test benches. This process is the behavioral simulation.
    • Types of simulation tools
      • Functional simulation tools – This will verify logical behavior. Also, the implementation after the testbench and design code.
      • Timing simulation tools – This will verify the timing requirements are in check by the circuit design. Also, will confirm the design is free of delays in the circuit signal.


RTL block synthesis / RTL function

  • After the generation of RTL code and testbench, the RTL team will work on the description by translating the RTL code into a gate-level netlist with the use of a logical synthesis tool.


Chip partitioning

  • This is when the engineer follows the ASIC design layout requirement and specification for the creation of its structure aided by EDA tools with proven methodologies.


Design for test insertion

  • To ensure that system-on-chip variation requirements are in check, new models and techniques allow for high-quality testing. Thus, the design for the test comes with a number of techniques.
Scan path insertion
    • This links all register elements into a single long shift register to evaluate small parts of the design instead of the entire design in a single process.
Memory built-in self-test
    • Certainly, chip memory requires lower area and fast access time in lower technology nodes. So, the memory built-in self-test is a device that checks RAMs.
Automatic test pattern generation
    • This method creates test vectors or sequential input patterns to check for faults in different elements of a circuit.



  • This is the first step in RTL-to-GDSII design, which places blocks into chips. In any case, the floorplan will determine the size of the chip and places the gates and connects them with wires.



  • This process is the placement of standard cells in a row.


Clock tree synthesis

  • This process builds the clock tree. Also, meets the defined timing, area, and power requirements.



  • This process is done via global and detailed routing.
Global routing
    • This calculates estimated values per net by the delays of wire fanout.
Detailed routing
    • This is where the actual delays of wire are calculated by different methods. So, among others, these methods are timing optimization and clock tree synthesis.


Final verification

  • This process involves 3 steps of physical verification also known as signoff checks. Also, this will help check if the layout is working just as it intends to.


 GDS II or graphical data stream information interchange

  • The engineer will perform wafer processing, packaging, testing, verification, and delivery to the physical IC in this final step.

Interested in getting your next project going with our experts at Linear MicroSystems? Click here to go to our contact page!

Linear MicroSystems, Inc. is proud to offer its services worldwide as well as the surrounding areas and cities around our Headquarters in Irvine, CA: Mission Viejo, Laguna Niguel, Huntington Beach, Santa Ana, Fountain Valley, Anaheim, Orange County, Fullerton, and Los Angeles.